Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 31: 93-99, Jan. 2018. ilus, graf, tab
Article in English | LILACS | ID: biblio-1022150

ABSTRACT

Background: Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors of the host innate immune system that are involved in the immune defense against bacterial pathogens. PGRPs have been characterized in several fish species. The PGN-binding ability is important for the function of PGRPs. However, the PGRP-PGN interaction mechanism in fish remains unclear. In the present study, the 3-D model of a long PGRP of half-smooth tongue sole (Cynoglossus semilaevis) (csPGRP-L), a marine teleost with great economic value, was constructed through the comparative modeling method, and the key amino acids involved in the interaction with Lys-type PGNs and Dap-type PGNs were analyzed by molecular dynamics and molecular docking methods. Results: csPGRP-L possessed a typical PGRP structure, consisting of five ß-sheets and four α-helices. Molecular docking showed that the van der Waals forces had a slightly larger contribution than Coulombic interaction in the csPGRP-L-PGN complex. Moreover, the binding energies of csPGRP-L-PGNs computed by MM-PBSA method revealed that csPGRP-L might selectively bind both types of MTP-PGNs and MPP-PGNs. In addition, the binding energy of each residue of csPGRP-L was also calculated, revealing that the residues involved in the interaction with Lys-type PGNs were different from that with Dap-type PGNs. Conclusions: The 3-D structure of csPGRP-L possessed typical PGRP structure and might selectively bind both types of MTP- and MPP-PGNs, which provided useful insights to understanding the functions of fish PGRPs.


Subject(s)
Animals , Tongue/immunology , Flatfishes/immunology , Flatfishes/metabolism , Binding Sites , Flatfishes/genetics , Peptidoglycan , Carrier Proteins , Toll-Like Receptors , Molecular Dynamics Simulation , Molecular Docking Simulation , Ligands
2.
Journal of Veterinary Science ; : 293-301, 2002.
Article in English | WPRIM | ID: wpr-148810

ABSTRACT

Lectins are glycoproteins that specifically bind carbohydrate structures and may participate in the biodefense mechanisms of fish. In this study, the binding of three lectins, Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA), Bandeiraea simplicifolia BS-1 (isolectin B4), Triticum vulgaris (WGA), Arachis hypogaea (PNA) and Ulex europaeus (UEA-I) were studied in the gill, liver, intestine, kidney, heart, and spleen of the flat fish Paralichthys olivaceus. DBA was detected in intestinal mucous cells, as well as in gill epithelial and mucous cells. It was weakly detected in renal tubule epithelial cells and in bile duct epithelial cells. The strong SBA staining was seen in the intestinal club cells, in bile duct epithelial cells and renal tubule epithelial cells. There were intense positive reactions for isolectin B4 in gill epithelial and mucous cells, and the strong isolectin B4 staining was seen in epithelial cells of the bile duct and intestine. The strong WGA staining was seen in the gill mucosal cells, sinusoid, renal tubule epithelial cells and mucosal cells of the intestine. UEA-I was detected in the gill epithelial and mucosal cells, bile duct epithelial cells and renal tubular epithelial cells. These results suggest that the six lectins examined were localized in the covering epithelia of the various organs of the flat fish and they may participate in the biodefense mechanism of the intra body surface in which is exposed to various antigens.


Subject(s)
Animals , Epithelial Cells/metabolism , Flatfishes/metabolism , Histocytochemistry/veterinary , Lectins/metabolism , Mucus/metabolism , Peanut Agglutinin/metabolism , Plant Lectins/metabolism , Soybean Proteins/metabolism , Wheat Germ Agglutinins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL